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Lecture 15-16 : Riemann Integration

Integration is concerned with the problem of finding the area of a region under a curve.

Let us start with a simple problem : Find the area A of the region enclosed by a circle of radius r.
For an arbitrary n, consider the n equal inscribed and superscibed triangles as shown in Figure 1.
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Since A is between the total areas of the inscribed and superscribed triangles, we have

nr2sin(π/n)cos(π/n) ≤ A ≤ nr2tan(π/n).

By sandwich theorem, A = πr2. We will use this idea to define and evaluate the area of
the region under a graph of a function.

Suppose f is a non-negative function defined on the interval [a, b]. We first subdivide the interval
into a finite number of subintervals. Then we squeeze the area of the region under the graph of f
between the areas of the inscribed and superscribed rectangles constructed over the subintervals as
shown in Figure 2. If the total areas of the inscribed and superscribed rectangles converge to the
same limit as we make the partition of [a, b] finer and finer then the area of the region under the
graph of f can be defined as this limit and f is said to be integrable.

Let us define whatever has been explained above formally.

The Riemann Integral

Let [a, b] be a given interval. A partition P of [a, b] is a finite set of points x0, x1, x2, . . . , xn such
that a = x0 ≤ x1 ≤ · · · ≤ xn−1 ≤ xn = b. We write P = {x0, x1, x2, . . . , xn}.

If P is a partition of [a, b] we write ∆xi = xi − xi−1 for 1 ≤ i ≤ n. Let f be a bounded real
valued function on [a, b]. For a partition P of [a, b], we define

Mi = sup{f(x) : xi−1 ≤ x ≤ xi} and mi = inf{f(x) : xi−1 ≤ x ≤ xi}.

U(P, f) =
n∑

1

Mi∆xi and L(P, f) =
n∑

1

mi∆xi.

The numbers U(P, f) and L(P, f) are called upper and lower Riemann sums for the partition P
(see Figure 2).

Since f is bounded, there exist real numbers m and M such that m ≤ f(x) ≤ M , for all
x ∈ [a, b]. Thus for every partition P ,

m(b− a) ≤ L(P, f) ≤ U(P, f) ≤ M(b− a).
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We define ∫ b

a
fdx = inf U(P, f) (1)

and ∫ b

a
fdx = supL(P, f). (2)

(1) and (2) are called upper and lower Riemann integrals of f over [a, b] respectively.

If the upper and lower integrals are equal, we say that f is Riemann integrable or integrable.
In this case the common value of (1) and (2) is called the Riemann integral of f and is denoted by∫ b
a fdx or

∫ b
a f(x)dx.

Examples : 1. Consider the function f : [0, 1] → R defined by

f(
1
2
) = 1 and f(x) = 0 for all x ∈ [0, 1]\{1

2
}.

Then f is integrable. We show this using the definition as follows. For any partition P of [0, 1],
L(P, f) is always 0 and hence the lower integral is 0. Let us evaluate the upper integral. Let
P = {x1, x2, .., xn} be any partition of [0, 1] and 1

2 ∈ [xi, xi+1] for some i. Then U(P, f) ≤ 2max∆xj .
Since we can always choose a partition P such that max∆xj is as small as possible, the upper
integral, which is the infimum of U(P, f)′s, is 0. Hence, f is integrable and

∫ 1
0 f(x)dx = 0.

2. Not every bounded function is integrable. For example the function

f(x) = 1 if x is rational and 0 otherwise

is not integrable over any interval [a, b] (Check this).

In general, determining whether a bounded function on [a, b] is integrable, using the definition,
is difficult. For the purpose of checking the integrability, we give a criterion for integrability, called
Riemann criterion, which is analogous to the Cauchy criterion for the convergence of a sequence.

Let us define some concepts and results before presenting the criterion. Throughout, we will
assume that f is a bounded real function on [a, b].

Definition: A partition P2 of [a, b] is said to be finer than a partition P1 if P2 ⊃ P1. In this case
we say that P2 is a refinement of P1. Given two partition P1 and P2, the partition P1 ∪ P2 = P is
called their common refinement.

The following theorem illustrates that refining partition increases lower terms and decreases
upper terms.

Theorem 1 : Let P2 be a refinement of P1 then L(P1, f) ≤ L(P2, f) and U(P2, f) ≤ U(P1, f).

Proof (*): First we assume that P2 contains just one more point than P1. Let this extra point
be x?. Suppose xi−1 < x? < xi, where xi−1 and xi are consecutive points of P1. Let

w1 = inf{f(x) : xi−1 ≤ x ≤ x?} and
w2 = inf{f(x) : x? ≤ x ≤ xi.}

Then w1 ≥ mi and w2 ≥ mi where mi = inf{f(x) : xi−1 ≤ x ≤ xi}. Then

L(P2, f)− L(P1, f) = w1(x? − xi−1) + w2(xi − x?)−mi(xi − xi−1) ≥ 0.
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If P2 contains k more points then we repeat this process k−times. The other inequality is analo-
gously proved. (Prove it). ¤

The geometric interpretation suggests that the lower integral is less than or equal to the upper
integral. So the next result is also anticipated.

Corollary 2 :
∫ b
a fdx ≥ ∫ b

a fdx.

Proof (*): Let P1, P2 be two partitions and let P be their common refinement. Then

L(P1, f) ≤ L(P, f) ≤ U(P, f) ≤ U(P2, f).

Thus for any two partitions P1 and P2, we have L(P1, f) ≤ U(P2, f).
Fix P2 and take sup over all P1. Then

∫ b
a fdx ≤ U(P2, f). Now take inf over all P2 to get the

desired result. ¤

In the following result we present the Reimann criterion (a necessary and sufficient condition
for the existence of the integral of a bounded function).

Theorem 3 : (Riemann’s criterion for integrability): f is integrable on [a, b] ⇔ for every
ε > 0 there exists a partition P such that

U(P, f)− L(P, f) < ε. (3)

Proof (*): For any P, we have

L(P, f) ≤
∫ b

a
fdx ≤

∫ b

a
fdx ≤ U(P, f).

Therefore (3) implies that ∫ b

a
fdx−

∫ b

a
fdx < ε, ∀ ε > 0.

Hence
∫ b
a fdx =

∫ b
a fdx i.e. f is integrable. Conversely, suppose f is integrable and ε > 0. Then

there exist partitions P1 and P2 such that

U(P2, f)−
∫ b

a
fdx < ε/2 and

∫ b

a
fdx− L(P1, f) < ε/2

Let P be the common refinement of P1 and P2. Then U(P, f)− L(P, f) < ε. ¤

The proof of the following corollary is immediate from the previous theorem.

Corollary 3 : Let f : [a, b] → R be a bounded function. Suppose (Pn) is a sequence of partitions
of [a, b] such that U(Pn, f)− L(Pn, f) → 0, then f is integrable.

Problem : Let f : [0, 1] → R such that f(x) =
{

1
n if x = 1

n
0 otherwise.

Show that f is integrable and

find
∫ 1
0 f(x)dx.

Solution : We will use the Riemann criterion to show that f is integrable on [0, 1]. Let ε > 0 be
given. We will choose a partition P such that UP, f)−L(P, f) < ε. Since 1/n → 0, there exists N
such that 1/n ∈ [0, ε] for all n > N . So only finite number of 1

n

′
s lie in the interval [ε, 1]. Cover

these finite number of 1
n

′
s by the intervals [x1, x2], [x3, x4], ..., [xm−1, xm] such that xi ∈ [ε, 1] for all
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i = 1, 2, .., m and the sum of the length of these m intervals is less than ε. Consider the partition
P = {0, ε, x1, x2, ..., xm}. It is clear that U(P, f) − L(P, f) < 2ε. Hence by the Reimann criterion
the function is integrable. Since the lower integral is 0 and the function is integrable,

∫ 1
0 f(x)dx = 0.

We will apply the Riemann criterion for integrability to prove the following two existence the-
orems.

Theorem 4: If f is continuous on [a, b] then f is integrable.

Proof : Let ε > 0. Since f is uniformly continuous, choose δ > 0 such that |s − t| < δ ⇒
|f(s)− f(t)| < ε for s, t ∈ [a, b].

Let P be a partition of [a, b] such that ∆xi < δ ∀ i = 1, 2, . . . , n. Then

Mi −mi ≤ ε ∀ i = 1, 2, . . . , n.

Hence

U(P, f)− L(P, f) =
n∑

1

(Mi −mi)∆xi ≤ ε(b− a).

This implies that f is integrable. ¤

Theorem 5: If f is a monotone function then f integrable.

Proof : Suppose f is monotonically increasing (the proof is similar in the other case.)
Choose a partition P such that ∆xi = b−a

n . Then Mi = f(xi) and mi = f(xi−1). Therefore

U(P, f)− L(P, f) =
b− a

n

n∑

1

[f(xi)− f(xi−1)]

=
b− a

n
[f(b)− f(a)]

< ε for large n.

Hence f is integrable. ¤

In the following problem we will see that limit and integral cannot be interchanged.

Problem : Let gn(y) =

{
nyn−1

1+y if 0 ≤ y < 1
0 if y = 1

. Then prove that lim
n→∞

1∫
0

gn(y)dy = 1
2 whereas

1∫
0

lim
n→∞ gn(y)dy = 0.

Solution : From the ratio test for sequences we can show that lim
n→∞

nyn−1

1+y = 0, for each 0 < y < 1.

Therefore
∫ 1
0 lim

n→∞ gn(y)dy = 0.

For the other part, use integration by parts to see that
1∫
0

nyn−1

1+y dy = 1
2 +

1∫
0

yn

(1+y)2
dy. Note that

1∫
0

yn

(1+y)2
dy ≤

1∫
0

yn = 1
n+1 → 0 as n →∞. Therefore, limn→∞

1∫
0

gn(y)dy = 1
2 .


